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Abstract

(G′/G)-expansion method is examined to solve the BoitiLeonPempinelli (BLP) system and the

(2 + 1)-dimensional breaking soliton system. The results show that this method is a powerful tool

for solving systems of nonlinear PDEs., it presents exact travelling wave solutions. The obtained

solutions include rational, periodical, singular, shock wave and solitary wave solutions.
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1. INTRODUCTION

Nonlinear PDEs are widely used to describe complex phenomena in various fields of

sciences, such as fluid mechanics, plasma physics, astrophysics, optical fibers, solid state

physics, chemical kinematics, chemical physics and geochemistry, etc., [1–12]. Studying the

nonlinear waves such as soliton, breather, compacton, etc., is one of the most important

problems in mathematical physics and engineering. Various mathematical methods for find-

ing exact solutions of NLEEs have been proposed, such as tanh method [12], extended tanh

method [13, 14], the symmetry method [15], sine-cosine method [16], the improved (G′/G)-

expansion method [17],the (G′/G, 1/G)-expansion method [18], homogeneous balance [19],

F-expansion method [20], generalized expansion method [21] and (G′/G) method [22–24].

Recently, In [24] (G′/G)-expansion method is applied to solve ZK and CKP equations in mul-

ticomponent plasma. (G′/G)-expansion is a direct, effective and powerful method for finding

analytical solutions of nonlinear partial differential equations. In [22] Wang et al. proposed

the method, while Zhang et al. [23] proposed a generalized (G′/G)-expansion method to

improve and extend G′/G method to solve variable coefficient and high dimensional equa-

tions. In this work the (G′/G)-expansion method with computations are performed with

computer algebra system such as Mathematica to deduce many exact breather-type solu-

tions containing rational, periodical, singular and solitary wave solutions. In this article,

many exact travelling solutions are obtained for the BoitiLeonPempinelli (BLP) equation

and the (2 + 1)-dimensional breaking soliton equation.

The manuscript is organised in the following fashion; In Section II, The extended (G′/G)-

expansion method is described. In section III we apply extended (G′/G)-expansion method

to solve the (BLP) equation and the (2 + 1)-dimensional breaking soliton equation systems.

conclusions are given in section V.
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2. DESCRIPTION OF THE METHOD

For the general NLEE

P (u, ux, ut, uy, uxx, ...) = 0 (1)

where u = u(x, y, t) and P is a polynomial in u and its derivatives. We seek its solutions in

the form

u(ζ) =
n∑
i=0

ai

(
G′(ζ)

G(ζ)

)i
, (2)

where ai are real constants with ai 6= 0 to be determined, n is a positive integer to be

determined. The function G(ζ) is the solution of the auxiliary linear ordinary differential

equation

AGG′′ −BGG′ − C(G′)2 − E(G)2 = 0, (3)

where A,B,C and E are real constants to be determined, and

ζ = x+ y − λt (4)

where λ is the speed of the travelling wave.

step 1. Using transformation (4) we obtain an ordinary differential equation (ODE)

for u = u(ζ):

E(u, u′, u′′, u′′′, ...) = 0 (5)

step 2. By balancing the highest nonlinear terms and the highest-order partial differ-

ential terms in the given NLEE we can determine n.

step 3. Substituting Eq. (2) and (3) into Eq. (5) and collecting coefficients of

polynomial of
(
G′(ζ)
G(ζ)

)
, then setting each coefficient to zero yields a set of algebraic equations

for ai (i=0,1,2,...,n), A,B,C,E and λ.

step 4. Solving the system of algebraic equations in step 2 for ai,A,B,C,E and λ using

Maple or Mathematica.

step 5. As Eq. (2) possesses the general solutions:

Case 1. If B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) > 0, then

(
G′(ζ)

G(ζ)

)
=

B

2Ψ
+

√
Ω

2Ψ

(
c1 sinh(

√
Ω

2Ψ
ζ) + c2 cosh(

√
Ω

2Ψ
ζ)

c1 cosh(
√

Ω
2Ψ
ζ) + c2 sinh(

√
Ω

2Ψ
ζ)

)
, (6)
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Case 2. If B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) < 0, then

(
G′(ζ)

G(ζ)

)
=

B

2Ψ
+

√
−Ω

2Ψ

(
−c1 sin(

√
−Ω

2Ψ
ζ) + c2 cos(

√
−Ω

2Ψ
ζ)

c1 cos(
√
−Ω

2Ψ
ζ) + c2 sin(

√
−Ω

2Ψ
ζ)

)
, (7)

Case 3. If B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) = 0, then

(
G′(ζ)

G(ζ)

)
=

B

2Ψ
+

√
−Ω

2Ψ

(
c2

c1 + c2ζ

)
, (8)

Case 4. If B = 0,Ψ = A− C and ∆ = ΨE > 0, then

(
G′(ζ)

G(ζ)

)
=

√
∆

2Ψ

(
c1 sinh(

√
∆

2Ψ
ζ) + c2 cosh(

√
∆

2Ψ
ζ)

c1 cosh(
√

∆
2Ψ
ζ) + c2 sinh(

√
∆

2Ψ
ζ)

)
, (9)

Case 5. If B = 0,Ψ = A− C and ∆ = ΨE < 0, then

(
G′(ζ)

G(ζ)

)
=

√
−∆

2Ψ

(
−c1 sin(

√
−∆
2Ψ

ζ) + c2 cos(
√
−∆
2Ψ

ζ)

c1 cos(
√
−∆
2Ψ

ζ) + c2 sin(
√
−∆
2Ψ

ζ)

)
, (10)

3. APPLICATION OF THE METHOD

1. BoitiLeonPempinelli (BLP) system

Let us consider the (2+1)-dimensional coupled BoitiLeonPempinelli (BLP) system,

uty = (u2 − ux)xy + 2vxx,

vt = vxx + 2(uv)x (11)

Balancing the highest derivative term with non-linear terms, hence we may assume that

u(x, y, t) = k0 + k1φ(ζ)

v(x, y, t) = µ0 + µ1φ(ζ) + µ2φ
2(ζ) (12)

where ζ = x + y − λt. Substituting Eq. (12) into Eq. (11) with aide of Eq. (3) and
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collecting coefficients of polynomial of φi and equating them to zero, we get a system of

algebraic equations for k0, k1, µ0, µ1 and µ2

−2Ek1µ0

A
− BEµ1

A2
− λEµ1

A
− 2Ek0µ1

A
− 2E2µ2

A2
= 0 (13)

−2Bk1µ0

A
−B

2µ1

A2
−Bλµ0

A
+

2Eµ0

A
−2CEµ1

A2
−2Bk0µ1

A
−4Ek1µ1

A
−6BEµ2

A2
−2λEµ2

A
−4Ek0µ2

A
= 0

(14)

2k1µ0 −
2Ck1µ0

A
+

3Bµ1

A
+ λµ1 −

3Bλµ1

A2
− λCµ1

A
+ 2k0µ1 −

2λk0µ1

A
− 4Bk1µ1

A
−

4B2µ2

A2
− 2Bλµ2

A
+

8Eµ2

A
− 8λEµ2

A2
− 4Bk0µ2

A
− 6Ek1µ2

A
= 0 (15)

− 2µ1 +
4Cµ1

A
− 2C2µ1

A2
+ 4k1µ1 −

4Ck1µ1

A
+

10Bµ2

A
+ 2λµ2 −

10BCµ2

A2
−

2λCµ2

A
+ 4k0µ2 −

4Ck0µ2

A
− 6Bk1µ2

A
= 0 (16)

−6µ2 +
12Cµ2

A
− 6C2µ2

A2
+ 6k1µ2 −

6Ck1µ2

A
= 0 (17)

Solving the last system of equations we get

k0 =
−B − Ac

2A
, k1 =

A− C
A

, µ2 = −k2
1, µ0 = − ek3

1

−A+ C + Ck1

, µ2 = −ck1 − 2k0k1 (18)

Thus we obtain the following solutions of Eq. (12):

For B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) > 0, we get

u1(ζ) =
B + 2Ak0

√
ΩTanh

[
ζ
√

Ω
2ψ

]
2A

v1(ζ) = −
B2 + 2AB(c+ 2k0)− 4A2µ0 + 2(B + A(c+ 2k0))

√
ΩTanh

[
ζ
√

Ω
2ψ

]
+ ΩTanh

[
ζ
√

Ω
2ψ

]2

4A2

(19)
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and

u2(ζ) =
B + 2Ak0

√
ΩCoth

[
ζ
√

Ω
2ψ

]
2A

v2(ζ) = −
B2 + 2AB(c+ 2k0)− 4A2µ0 + 2(B + A(c+ 2k0))

√
ΩCoth

[
ζ
√

Ω
2ψ

]
+ ΩCoth

[
ζ
√

Ω
2ψ

]2

4A2

(20)

However for B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) < 0, we obtain periodic solutions

u3(ζ) =
B + 2Ak0

√
−ΩTan

[
ζ
√

Ω
2ψ

]
2A

v3(ζ) = −
B2 + 2AB(c+ 2k0)− 4A2µ0 + 2(B + A(c+ 2k0))

√
−ΩTan

[
ζ
√

Ω
2ψ

]
− ΩTan

[
ζ
√

Ω
2ψ

]2

4A2

(21)

u4(ζ) =
B + 2Ak0

√
−ΩCot

[
ζ
√

Ω
2ψ

]
2A

v4(ζ) = −
B2 + 2AB(c+ 2k0)− 4A2µ0 + 2(B + A(c+ 2k0))

√
−ΩCot

[
ζ
√

Ω
2ψ

]
− ΩCot

[
ζ
√

Ω
2ψ

]2

4A2

(22)

For B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) = 0, we obtain rational solutions

u5(ζ) = k0 +

B
2

+ ψ
ζ

A

v5(ζ) = µ0 −
(c+ 2k0)(Bζ + 2ψ)

2Aζ
− (Bζ + 2ψ)2

4A2ζ2
(23)

For B = 0,Ψ = A− C and ∆ = ΨE > 0, we get
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u6(ζ) =
λ

2
+

√
∆Tanh

[
Eζ√

∆

]
A

v6(ζ) =

∆

[
1− Tanh

[
Eζ√

∆

]2
]

A2
(24)

u7(ζ) =
λ

2
+

√
∆Coth

[
Eζ√

∆

]
A

v7(ζ) =

−∆

[
−1 + Coth

[
Eζ√

∆

]2
]

A2
(25)

For B = 0,Ψ = A− C and ∆ = ΨE < 0, the periodic solutions

u8(ζ) =
−λ
2
−

√
−∆Tan

[
Eζ√
−∆

]
A

v8(ζ) =

∆

[
−1 + Tan

[
Eζ√
−∆

]2
]

A2
(26)

u9(ζ) =
−λ
2
−

√
∆Cot

[
Eζ√
−∆

]
A

v9(ζ) =

∆

[
−1 + Cot

[
Eζ√
−∆

]2
]

A2
(27)

2. The (2 + 1)-dimensional breaking soliton system

We consider the (2 + 1)-dimensional breaking soliton system,

ut + αuxxy + 4α(uv)x = 0,

uy = vx (28)
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Balancing the highest derivative term with non-linear terms, hence we may assume that

u(x, y, t) = k0 + k1φ(ζ) + k2φ
2(ζ)

v(x, y, t) = µ0 + µ1φ(ζ) + µ2φ
2(ζ) (29)

where ζ = x + y − λt. By the same way we Substitute Eq. (29) into Eq. (28) and

collecting coefficients of polynomial of φi and equating them to zero, we get a system of

algebraic equations for k0, k1, k2, µ0, µ1 and µ2, by solving this system of equations we get

the first set,

k1 =
3B(A− C)

2A2
, k2 =

3(A− C)2

2A2
, µ1 = k1, µ2 = k2 (30)

and the second set,

k1 = 0, k2 = −3 (A2 − 2AC + C2)

2A2
, µ2 = k2, µ0 =

−3Ak0 + 3Ck0 − 4ek2

3(A− C)
, µ1 = 0 (31)

Thus for the first set, we obtain the follwing solutions of Eq. (6):

For B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) > 0, we get

u1(ζ) = k0 +
3ΩTanh

[
ζ
√

Ω
2ψ

]2

8A2

v1(ζ) = µ0 +
3ΩTanh

[
ζ
√

Ω
2ψ

]2

8A2
(32)

and

u2(ζ) = k0 +
3ΩCoth

[
ζ
√

Ω
2ψ

]2

8A2

v2(ζ) = µ0 +
3ΩCoth

[
ζ
√

Ω
2ψ

]2

8A2
(33)
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However for B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) < 0, we obtain periodic solutions

u3(ζ) = k0 −
3ΩTan

[
ζ
√

Ω
2ψ

]2

8A2

v3(ζ) = µ0 −
3ΩTan

[
ζ
√

Ω
2ψ

]2

8A2
(34)

u4(ζ) = k0 −
3ΩCot

[
ζ
√

Ω
2ψ

]2

8A2

v4(ζ) = µ0 −
3ΩCot

[
ζ
√

Ω
2ψ

]2

8A2
(35)

For B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) = 0, we obtain rational solutions

u5(ζ) = k0 +
3 (3B2ζ2 + 8Bζψ + 4ψ2)

8A2ζ2

v5(ζ) = µ0 +
3 (3B2ζ2 + 8Bζψ + 4ψ2)

8A2ζ2
(36)

For B = 0,Ψ = A− C and ∆ = ΨE > 0, we get

u6(ζ) = k0 +
3∆Tanh

[
Eζ√

∆

]2

2A2

v6(ζ) = µ0 +
3∆Tanh

[
Eζ√

∆

]2

2A2
(37)

u7(ζ) = k0 +
3∆Coth

[
Eζ√

∆

]2

2A2

v7(ζ) = µ0 +
3∆Coth

[
Eζ√

∆

]2

2A2
(38)
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For B = 0,Ψ = A− C and ∆ = ΨE < 0, the periodic solutions

u8(ζ) = k0 −
3∆Tan

[√
−∆ζ
Ψ

]2

2A2

v8(ζ) = µ0 −
3∆Tan

[√
−∆ζ
Ψ

]2

2A2
(39)

u9(ζ) = k0 −
3∆Cot

[√
−∆ζ
Ψ

]2

2A2

v9(ζ) = µ0 −
3∆Cot

[√
−∆ζ
Ψ

]2

2A2
(40)

For the second set,

For B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) > 0, we get

u1(ζ) = k0 −
3ΩTanh

[
ζ
√

Ω
2Ψ

]2

8A2

v1(ζ) = −k0 +
2∆

A2
−

3ΩTanh
[
ζ
√

Ω
2Ψ

]2

8A2
(41)

and

u2(ζ) = k0 −
3ΩCoth

[
ζ
√

Ω
2Ψ

]2

8A2

v2(ζ) = −k0 +
2∆

A2
−

3ΩCoth
[
ζ
√

Ω
2Ψ

]2

8A2
(42)

However for B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) < 0, we obtain periodic solutions

u3(ζ) = k0 +
3ΩTan

[
ζ
√

Ω
2ψ

]2

8A2

v3(ζ) = −k0 +
2eψ

A2
+

3ΩTan
[
ζ
√

Ω
2ψ

]2

8A2
(43)
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u4(ζ) = k0 +
3ΩCot

[
ζ
√

Ω
2Ψ

]2

8A2

v4(ζ) = −k0 +
2∆

A2
+

3ΩCot
[
ζ
√

Ω
2Ψ

]2

8A2
(44)

For B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) = 0, we obtain rational solutions

u5(ζ) = k0

v5(ζ) =
2E

A
− 2CE

A2
− k0 (45)

For B = 0,Ψ = A− C and ∆ = ΨE > 0, we get

u6(ζ) = k0 −
3∆Tanh

[
Eζ√

∆

]2

2A2

v6(ζ) = −
−4∆ + 2A2k0 + 3∆Tanh

[
Eζ√

∆

]2

2A2
(46)

u7(ζ) = k0 −
3∆Coth

[
Eζ√

∆

]2

2A2

v7(ζ) = −
−4∆ + 2A2k0 + 3∆Coth

[
Eζ√

∆

]2

2A2
(47)

For B = 0,Ψ = A− C and ∆ = ΨE < 0, the periodic solutions

u8(ζ) = k0 +
3∆Tan

[√
−∆ζ
Ψ

]2

2A2

v8(ζ) = −
−4∆ + 2A2k0 + 3∆Tan

[√
−∆ζ
Ψ

]2

2A2
(48)
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FigureH1L
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FIG. 1: Three-dimensional profile of the periodic solution

u9(ζ) = k0 +
3∆Cot

[√
−∆ζ
Ψ

]2

2A2

v9(ζ) = −
−4∆ + 2A2k0 + 3∆Cot

[√
−∆ζ
Ψ

]2

2A2
(49)

4. CONCLUSION

In this article, (G′/G)-expansion method was applied to give the traveling wave solutions

of two Coupled (2 + 1)-Dimensional Equations, the BoitiLeonPempinelli (BLP) equation and

the (2 + 1)-dimensional breaking soliton equation, The (G′/G)-expansion method examined

for investigating the rogue wave solutions for (2+1) dimensional real field NLEEs.

(G′/G)-expansion method gives different classes of solutions. These solutions include

many types like rational, periodical, soliton solutions, etc. For example, solutions (26)

and (34) are examples exhibiting the sinusoidal-type periodical solutions, which develop a

singularity at a finite point, i.e., for any fixed t = t0 there exists a value of 0 at which these

solutions blow up (see figure 1). Solution u7 in (25) is in the form of explosive/blow-up

solutions as depicted in figure 2.
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FigureH2L
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FIG. 2: Three-dimensional profile of the explosive/blowup pulse

FigureH3L
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FIG. 3: Three-dimensional profile of the soliton solution.

Solution (23) represents the rational-type solutions, the rational solution may be a discrete

joint union of manifolds. The solutions v6 in (24) is a soliton wave solution (see figure 3),

while we obtained shock wave solutions like u6 in (24) as depicted in figure 4.
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FigureH4L
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FIG. 4: Three-dimensional profile of the shock wave solution.

References

[1] Wazwaz A.M. (2009), Partial Differential Equations and Solitary Waves Theory, Springer.

[2] Giga M.H., Giga Y., Saal J. (2010), Nonlinear partial differential equations (Asymptotic

Behavior of Solutions and Self-Similar Solutions), Springer.

[3] UM Abdelsalam, WM Moslem, AH Khater, PK Shukla, Solitary and freak waves in a dusty

plasma with negative ions, Physics of Plasmas 18 (2011), 092305.

[4] Ma W.X., Fuchssteiner B.J. (1996), Explicit and exact solutions of Kolmogorov-PetrovskII-

Piskunov equation. Int. J. Nonlinear Mech. 31 32938.

[5] Wang M.L., Zhou Y.B., Li Z.B. (1996), Application of a homogeneous balance method to

exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A 216 6775.

[6] Wang J.-Y., Liang Z.-F., and Tang X.-Y. (2014), Infinitely many generalized symmetries and

Painlev analysis of a (2 + 1)-dimensional Burgers system, Phys. Scr. 89 025201

[7] AMA El-Sayed, M Gaber (2006), The Adomian decomposition method for solving partial

differential equations of fractal order in finite domains, Physics Letters A 359 175-182.

[8] El-Wakil S.A., El-labany S.K., Zahran M.A. and Sabry R. (2002), Modified Extended Tanh

Function Method for Solving Nonlinear Partial Differential Equations, Physics Letters A 299

179-188.

14



[9] UM Abdelsalam, S Ali, I Kourakis, Nonlinear electrostatic excitations of charged dust in

degenerate ultra-dense quantum dusty plasmas, Physics of Plasmas 19 (2012), 062107

[10] Sabry R., Moslem W.M., Haas F., Ali S., Shukla P.K. (2008), Nonlinear structures: Explosive,

soliton, and shock in a quantum electron-positron-ion magnetoplasma, Physics of Plasmas 15

(12), 122308

[11] Moslem W.M., Sabry R., Abdelsalam U.M., Kourakis I., Shukla P.K. (2009), Solitary and

blow-up electrostatic excitations in rotating magnetized electronpositronion plasmas, New

Journal of Physics 11 033028.

[12] W. Malfliet, Solitary wave solutions of nonlinear wave equations, Am. J. Phys. 60 (1992)

650-654.

[13] Fan E. (2000), Extended tanh-function method and its applications to nonlinear equations,

Phys. Lett.A. 277 212-218.

[14] U.M. Abdelsalam, Exact travelling solutions of two coupled (2+ 1)-Dimensional Equations,

J. Egypt. Math. Soc. 25 (2017), 125-128.

[15] M.H.M. Moussa, R.M. El-Shiekh, Similarity reduction and similarity solutions of Zabolotskay-

Khoklov equation with dissipative term via symmetry method, Physica A 371 (2006) 325-335.

[16] Wazwaz A.M. (2004), The sine-cosine method for obtaining solutions with compact and non-

compact structures, Applied Mathematics and Computation. 159 559-576.

[17] E.M.E. Zayed, Y.A. Amer, R.M.A. Shohib, Exact traveling wave solutions for nonlinear frac-

tional partial dierential equations using the improved G′/G-expansion method, Int. J. Eng.

Appl. Sci. 7 (2014) 18-31.

[18] E. M. E. Zayed and K. A. E. Alurr., On solving two higher-order nonlinear PDEs describing

the propagation of optical pulses in optic .bers using the (G′/G, 1/G)-expansion method, Ric.

mat., 64 (2015) 167-194.

[19] Abdelsalam U. M., Allehiany F. M., Moslem W. M., El-Labany S. K. (2016), Nonlinear

structures for extended Kortewegde Vries equation in multicomponent plasma, Pramana J.

Phys. 86 581-597; Abdelsalam U. M., Allehiany F. M., Different Nonlinear Solutions of KP

Equation in Dusty Plasmas, Arab J Sci Eng. DOI 10.1007/s13369-017-2829-z.

[20] Cai G., Wang Q., and Huang J. (2006), Inter. J. Nonl. Sci., A modified F-expansion method

for solving breaking soliton equation 2 122.

[21] Sabry R., Zahran M.A. and Fan E. (2004), A new generalized expansion method and its appli-

15



cation in finding explicit exact solutions for a generalized variable coefficients KdV equation,

Phys. Lett. A. 326 326-93.

[22] Wang M.L., Li X., Zhang J. (2008), The G′/G- expansion method and evolution erquations

in mathematical physics, Phys. Lett. A. 372 417-421.

[23] Zhang J., Wei X. and Lu Y. (2008), A generalized (G’/G)-expansion method and its applica-

tions, Phys. Lett. A, 372, 3653 .

[24] Abdelsalam U. M. and Selim M. (2013), Ion-acoustic waves in a degenerate multicomponent

magnetoplasma, J. Plasma Phy. 79 163 ; Selim M.M., Abdelsalam U.M. (2014), Propagation of

cylindrical acoustic waves in dusty plasma with positive dust, Astrophysics and Space Science

353 (2), 535-542

16


